

HPE Hall Planning & Engineering, Inc.

Richard A. Hall, P.E. October 20th 2020

Two-Way: Davis Hwy & Dr. Martin Luther King, Jr. Drive Pensacola Community Redevelopment Agency Pensacola Urban Core Redevelopment Board

Today's focus

On-Street Parking in the Dr. MLK Jr. Drive / Davis Highway Corridor

It's Value and Contribution to Community Design for Residential and Commercial Properties.

This presentation is about how On-Street Parking Influences:

- 1. Safety and Complete Streets.
- 2. Pensacola's historic district as a livable, multi-modal environment.

Today's Content

- 1. History & Guidance
- 2. The Corridor
- 3. With & Without Parking
- 4. Recommendations

Richard A. Hall, P.E.

On-Street Parking in the Dr. MLK Jr. Drive / Davis Highway Corridor

1.History

The Ford Model T

1927 – After 19 years, 15+ million vehicles, Model T production ended on May 26th

Ludwig Karl Hilberseimer Modernist Architect 1885-1967

Active 1920s – 1950s

Modernism - Albany, New York Empire Plaza

pedestrian fatalities & speed

HPE Hall Planning & Engineering, Inc.

Top 10 Walkability Factors

- 10. Street Trees
- 9. Traffic Volumes
- 8. Sidewalks
- 7. Narrow Streets
- 6. Interconnected Streets

- 5. On Street Parking
- 4. Lower Traffic Speeds
- 3. Mixed Land Use
- 2. Buildings Fronting St.
- 1. Small Block Size!

comparison of street standards by context

<u>suburban</u>

- 11'-12' lanes
- off-street parking
- 20'-30' curb radius
- curb extensions
- blocks 600-1000'+
- volume-based
- mostly driving

walkable urban

- 9'-10' lanes
- on-street parking
- 5'-15' curb radius
- traditional curbs
- blocks </=500'
- speed-based
- walking, biking & driving

Complete Streets Initiative (CSI) Handbook

The Florida Department of Transportation

- Initial in June 2017
- Ties together diverse FDOT standards and procedures
- Explains context-based
 design criteria and standards
- Provides groundwork for the FDOT Design Manual (FDM)

Context Classification System

C1 C2 C2T C3R C3C C4 C5 C6

C3C-Suburban Commercial

Mostly non-residential uses with large building footprints and large parking lots within large blocks and a disconnected or sparse roadway network.

C4-Urban General

Mix of uses set within small blocks with a well-connected roadway network. May extend long distances. The roadway network usually connects to residential neighborhoods immediately along the corridor or behind the uses fronting the roadway.

C5-Urban Center

Mix of uses set within small blocks with a well-connected roadway network. Typically concentrated around a few blocks and identified as part of a civic or economic center of a community, town, or city.

C6-Urban Core

Areas with the highest densities and building heights, and within FDOT classified Large Urbanized Areas (population >1,000,000). Many are regional centers and destinations. Buildings have mixed uses, are built up to the roadway, and are within a wellconnected roadway network.

OLD PPM – Area	NEW FDM – Context Classification		
	C1	Natural	
	C2	Rural	
Rural	C2T	Rural Town	
Urban	C3	Suburban	
	C4	Urban General	
	C5	Urban Center	
	C6	Urban Core	

Context Classifications: Expanded Context Areas

What's Changing?

Lane Widths for Arterials and Collectors:

Context Classification		Minimum Lane Widths (ft)			
		PPM	FDM		
C1	Natural	12	12		
C2	Rural	12	12		
C2T	Rural Town	11	11		
C3	Suburban	11	10		
C4	Urban General	11	10		
C5	Urban Center	11	10		
C6	Urban Core	11	10		

Context Classification - C5 Urban Center

Context Classification - C3 Suburban Commercial

- problem: national guidelines focus on minimum vehicle delay & raising LOS [speed & delay], faster is better
- response: lanes > 10' cause <u>higher off</u> <u>peak speeds</u>, unacceptable to pedestrian safety
- FDM Table 201.4.1 context based lower speeds
- Florida Greenbook p. 19-9 E. Design Elements

FDOT Design Manual Table 201.4.1

Topic #625-000-002 FDOT Design Manual

January 1, 2018

Table 201.4.1 Design Speed						
Limited Access Facilities (Interstates, Freeways, and Expressways)						
	Area	Allowable Range (mph)	SIS Minimum (mph)			
Rural and Urban		70	70			
Urbanized		50-70	60			
Arterials and Collectors						
Context Classification		Allowable Range (mph)	SIS Minimum (mph)			
C1	Natural	55-70	65			
C2	Rural	55-70	65			
C2T	Rural Town	25-45	40			
C3	Suburban	35-55	50			
C4	Urban General	30-45	45			
C5	Urban Center	25-35	35			
C6	Urban Core	25-30	30			

lane width

- problem: national guidelines specify 12' or 11' lanes for general traffic conditions
- response: lanes > 10' cause higher speeds, unacceptable to pedestrians
- -Set lane width based on context and consider

9 and 10 foot lanes

- -FDM Table 210.2.1
- –SC p.32 Table 3A design speed & lane width

Table 210.2.1 – Minimum Travel and Auxiliary Lane Widths

Context Classification		Travel (feet)		Auxiliary (feet)		Two-Way Left Turn (feet)			
		Design Speed (mph)		Design Speed (mph)			Design Speed (mph)		
		25-35	40-45	≥ 50	25-35	40-45	≥ 50	25-35	40
C1	Natural	11	11	12	11	11	12	11	11
C2	Rural	11	11	12	11	11	12	11	11
C2T	Rural Town	11	11	12	11	11	12	12	12
C3	Suburban	10	11	12	10	11	12	11	12
C4	Urban General	10 J,	11	12	10	11	12	11	12
C5	Urban Center	10	11	12	10	11	12	11	12
C6	Urban Core	10	11	12	10	11	12	11	12

Travel Lanes:

- (1) Minimum 11-foot travel lanes on designated freight corridors and SIS facilities with design speed 25-35 mph (regardless of context). However, if truck volume is XX trucks per hour per lane, provide a minimum 12-foot travel lane.
- (2) Minimum 12-foot travel lanes on all undivided 2-lane, 2-way roadways (regardless of context and speed). However, 11-foot lanes may be used on 2-lane, 2-way curbed roadways that have adjacent bicycle lanes.
- (3) 10-foot travel lanes are typically provided on very low speed roadways, but should consider wider lanes when transit is present or greater than XX trucks per hour per lane.
- (4) Travel lanes should not exceed 14 feet in width.

 problem: Same national trend of auto dominance.

- response: The 3 bike facilities:
 - lane
 - path
 - Route (Sharrow)

- new guidance on emerging trend
- separated bicycle lanes
- controversial
- can conflict with parking spaces in ROW allocation
- operations issues
 - intersections
 - one way vs two way streets
- ground zero in the shifting complete streets policies discussion

the sharrow shares

trees

- Problem: Many would prefer not to deal with trees in the urban ROW. Cutting, trimming or removal proposals flourish. It is said that trees conflict with utilities, fire fighting, retail store visibility, errant vehicles, sidewalk paving, maintenance budgets and street sweeping.
- Response: Highlight the clear benefits of trees in the public realm; shade, enclosure, temperature mitigation, speed management and aesthetics.
 Specify sustainable species, wells or planting strips, trimming procedures and continuing annual budget.

ADA shade

enclosure

What does the CRA say about parking?

Chapter 12-2. Zoning Districts Article VIII: CRA Overlay District

[actual location in code to be confirmed]

Urban Design Standards and Guidelines

[draft date: 3/15/18]

"R" Districts

CRA City of Pensacola

Article VIII: CRA Overlay District

Section 5: Urban Standards & Guideline

Table 5.3.1: Detached Single-Family & Duplexes (R-1AA, R-1A)

Se	tbacks - Principal I	Building (feet)	Setbacks - Accesso	ory Building (feet)
а	Front	20 min.	e Front	50 min.
b	Front, Side	5 min.	f Front, Side	5 min.
С	Side (Interior)	5 min.	g Side (Interior)	1 min.
d	Rear	30 min.	h Rear	5 min.
Fr	ontage & Lot Occu	pation (min.)	Frontage Yard Typ	es
	Primary	45%	Standard	Permitted
	Secondary	40%	Shallow	Not Permitted
Lo	t Occupation		Urban	Not Permitted
i	Lot Width	30 ft. min.	Pedestrian Forecou	rt Not Permitted
	Lot Coverage	50% max.	Vehicular Forecourt	Not Permitted

Article VIII: CRA Overlay District

Section 5: Urban Standards & Guidelines

Table 5.4.1: Frontage Yard Types

A. Standard Yard (Fenced or not)

Illustration

Surface

50% minimum shall be pervious material. A minimum of one (1) tree is required per Section 6.1. Paving is limited to walkways, and driveways.

Illustration 12-2-25.10 - Driveway Locations Illustrated

Illustration 12-2-25.9 – Garage Locations Illustrated

Article VIII: CRA Overlay District

Section 5: Urban Standards & Guidelines

5.7. PARKING ACCESS, DESIGN & REDUCTIONS

Intent: The intent of these standards is to guide the placement and design of parking, when it is provided.

Vehicular parking spaces should be carefully integrated to avoid the negative impacts of large surface parking areas on the pedestrian environment. In general, parking supply should be shared by multiple users and property owners to facilitate the ability to "park once and walk". On-street parallel parking is encouraged on both sides of the street to provide a supply of convenient shared parking, and as a means to provide a protective buffer for pedestrians on the sidewalk. Where surface parking is permitted, it should be hidden or screened from the pedestrian realm by use of garden walls and narrow landscape edges.

3. The Corridor

South End

: Design Concept Alcaniz Street/Wright Street

North End

DAVIS HIGHWAY & DR. MARTIN LUTHER KING JR. DRIVE / ALCANIZ STREET

Two-Way Conversion Traffic Feasibility Study

Design Concept Roundabout

Davis Highway - Existing One-Way Lanes w 35 mph Speed Limit

4' 2' 12' 2' 4' 11' 5' 8'

Martin Luther King, Jr. Existing One-Way with Parking

Martin Luther King, Jr. Future Two-Way With Parking

Impact of Parking Removal

- Speed > Safety
- Single Family Residential Lots
 - Cost
 - Replacement parking on-site
 - Minimum 10 feet x 20 feet per space
 - Construction cost \$3,000
 - Home Value reduced w parking removal
- Commercial Lots
- Cost of replacement parking off-site \$3,000
- Value of single space can be \$15,000 +

Impact of Parking Removal

- Removal of On-Street parking in this corridor is counter to the principles and regulations established by the CRA to create Complete Streets in mixed-use, sustainable communities.
- CRA Parking regulations for single family dwellings strongly encourage on-street parking when alley access is not available.
- One-way conversion to Two-way will improve speed management.
- Removal of On-Street parking would <u>reverse</u> this improvement and increase vehicle speed on both streets.
 - Davis [50' ROW] has one side parked Front yard parking pads are increasing.
 - Dr. MLK Jr. [60' ROW] is parked on both sides w wider ROW
 - Thus, removal of Parking will increase speed significantly.
 - Today's higher speed encourages front yard parking pads.

Parking Recommendations

- Re-stripe Davis highway 50' ROW, 36' Pavement
 - From two travel lanes, bike lane, & 1 parking lane 12'/11'/5'/8' = 36'
 - To two travel lanes & 2 Parking Lanes 8'/10'/10'/8' = 36'
- Re-Stripe Dr. Martin Luther King, Jr. Drive
 - 60' ROW, 38' Pavement
 - From 8'/11'/11'/8'
 - To 9'/10'/10'/9' Widen the parking, narrow the lanes.
- Reduce Posted Speed to 25 mph! Due to Pedestrian Context
- Place Sharrows in each travel lane (both Streets).
- To yield Complete Streets:
 - Encourage Corner Lots to access parking from side streets (E/W).
 - Consider removing some LT storage lanes to manage driver speed.
 - Add Street Trees for speed management and Shade for pedestrians.
 - Consider renaming Davis Highway to Davis Street, Boulevard ...

